中学和大学为何要重视数学建模教育

  • 我要分享:

  ■最近在全国制订高中数学课程标准时,一位专家对数学的作用概括了三句话:用数学的眼光观察现实世界,用数学的思维思考现实世界,用数学的语言表达现实世界。

  ■传统的数学教育往往从基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论。这固然可以使学生在较短时间内按部就班地学到尽可能多的内容,并体会到一种丝丝入扣、天衣无缝的美感。但是,过分强调这一点,就可能使学生误以为数学这样的完美无缺、无懈可击是与生俱来、天经地义的,反而使思想处于一种僵化状态,在生动活泼的现实世界面前手足无措、一筹莫展,甚至使学生感到学了很多据说非常重要、十分有用的数学知识以后,却不会应用或无法应用,甚至还觉得毫无用处。

  ■从今年开始,数学建模的实践和活动也已首次列入全国高级中学的教学计划。

  世间万事万物都有数和形两个侧面,数学就是撇开了事物其他方面的状态和属性,单纯研究现实世界中空间形式与数量关系的科学。数学是各门科学的重要基础,更是人类文明的重要组成部分和坚实支柱,现在,大学本科数学类的专业已经成了一个最热门的专业。

 

  但是,要显示数学强大的生命力,需要将实际问题化为相应的数学问题,然后对这个数学问题进行分析和计算,最后将所求解答回归实际,看能否有效地回答问题,如果不能,再从头调整,直到基本满意为止。这个过程,特别是其中第一步,就是数学建模,即为所考察的实际问题建立数学模型。

  数学建模是联系数学与应用的重要桥梁。数学建模对培养创新型人才非常重要

  “数学模型”和“数学建模”这两个名词出现得比较晚,在我国兴起并被广泛使用,不过是近三十多年的事,但数学模型的建立或数学建模,古已有之。

  公元前三世纪欧几里得所著的《几何原本》是公认的数学经典。他用严格演绎的方法,利用古希腊时代积累的众多几何知识建立了一个完整的体系,一座宏伟的几何大厦,为现实世界的空间形式构建了一个数学模型。这个模型十分有效,在各方面都有成功的应用,并且在它的基础上发展出一整套几何学、以及以演绎推理为核心的数学研究方法,至今都发挥着巨大作用。

  此外,开普勒根据第谷的大量天文观测数据总结出的行星运动三大规律,后来牛顿利用与距离平方成反比的万有引力公式,从牛顿力学的原理出发,给出了严格的证明,同样是数学建模取得辉煌成功的例子。一些重要的力学、物理学的基本微分方程,如经典力学中的牛顿第二运动定律、电动力学中的麦斯韦尔方程、流体力学中的欧拉方程与纳维-斯托克斯方程,以及量子力学中的薛定谔方程等,都是抓住学科本质的数学模型,并成为相关学科的核心内容和基本理论框架。

  1998年菲尔兹奖得主、英国数学家高尔斯(T.Gowers)认为:数学所研究的并非真正的现实世界,而只是现实世界的数学模型,即所研究的那部分现实世界的一种虚构和简化的版本。

  按高尔斯的说法,数学研究的是现实世界的数学模型。作为数学研究对象的数学模型本质上来自现实世界,并要接受现实世界无情而公正的检验。

  仔细思考,整数,实数,以及欧氏几何,线性空间,群论,微积分,集合论,乃至混沌,分形等等,有哪一个不是某一方面的数学模型呢?!整个数学的发展历史就是不断建立数学模型并对其研究逐步深化的历史。

  从事数学建模,好比构建一座房屋,一旦房屋初具规模,就成了一个数学模型。以后数学家们所做的工作,就是在这个基础上,对建筑进行内部整理与装修。不论应用数学还是纯粹数学,都是在数学建模基础上加以发挥和深化。

  同时,数学教育本质上是一种素质教育。要真正使学生走近数学、学好数学并热爱数学,数学的教学不能和其他科学以及整个外部世界隔离开来,关起门来只在数学内部的概念、方法和理论中兜圈子。这样做不利于提高学生的数学素养。

  我们的教学应该让学生身临其境地了解知识创造过程,否则素质教育就是一句空话

  长期以来,数学课程往往自成体系,处于自我封闭状态,一直没有有效的方式,将数学学习与丰富多彩、生动活泼的现实生活联系起来,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不会应用或无法应用,有些甚至还觉得毫无用处。